FK arm

A Forward Kinematics calculation of a 5-axis arm

Method 1

Use a loop function to calculate the matrix


#include <iostream>
#include <cmath>
using namespace::std;

double alpha[5] = {0,M_PI/2,0,0,0};
double theta[5] = {0,0,0,0,0};
double a[5] = {0,0,105,90,65};
double d[5] = {16,0,0,0,0};
double rot[5] = {theta[0],M_PI/2-theta[1],theta[2],-theta[3],theta[4]};
double matrixW[4][4] =  {
    {1,0,0,0},
    {0,1,0,0},
    {0,0,1,0},
    {0,0,0,1}
};

void multiply(double trans[][4], double mat1[][4], double result[][4]) {
    for(int i = 0; i < 4; ++i) {
    for(int j = 0; j < 4; ++j) {
        double sum = 0;
        for(int k = 0; k < 4; ++k) {
        sum += mat1[i][k] * trans[k][j];
        }
        result[i][j] = sum;
    }
    }
}

void calculateW(){
    for(int i = 4; i > -1; i--){
    double trans[4][4] =
    {{cos(rot[i]), -sin(rot[i]), 0, a[i]},
    {sin(rot[i])*cos(alpha[i]), cos(rot[i])*cos(alpha[i]), -sin(alpha[i]), -sin(alpha[i])*d[i]},
    {sin(rot[i])*sin(alpha[i]), cos(rot[i])*sin(alpha[i]), cos(alpha[i]), cos(alpha[i])*d[i]},
    {0, 0, 0, 1}};
    double result[4][4];
    multiply(matrixW, trans, result);
    for(int i = 0; i < 4; i ++){
    for(int j = 0; j < 4; j ++){
        matrixW[i][j] = result[i][j];
    }
    }
    }
}

int main() {
    cout<< "W"<<"\n";
    calculateW();
    for(int i = 0; i < 4; i ++){
    for(int j = 0; j < 4; j ++){
        if(abs(matrixW[i][j])<0.001){
        matrixW[i][j] = 0;
        }
        cout << matrixW[i][j] << "\t" << "\t";
    }
    cout<< "\n";
    }
    return 0;
}

Method 2

Add Y-axis rotation

Although we never thought about add y-axis rotation in DH, I consider Y-axis rotation as a possibility of the solution for joint 1 and joint 5

  • Principle
  • code
#include <iostream>
#include <cmath>
using namespace std;
/**************************************************/
double a[5] = {0,16,105,90,0};
/**************************************************/
double alfa[5] = {0,0,0,0,0};
/**************************************************/
double d[5] = {0,0,0,0,65};
/**************************************************/
double rot[5] = {0,0,0,0,0};
/**************************************************/
double beta[5] = {-M_PI/2,0,0,M_PI/2,0};
/**************************************************/
double matrix[4][4] =
{{1, 0, 0, 0},
{0, 1, 0, 0},
{0, 0, 1, 0},
{0, 0, 0, 1}};
void multiply(double mat1[][4], double trans[][4], double result[][4]) {
    for(int i = 0; i < 4; ++i) {
    for(int j = 0; j < 4; ++j) {
        double sum = 0;
        for(int k = 0; k < 4; ++k) {
        sum += mat1[i][k] * trans[k][j];
        }
        result[i][j] = sum;
    }
    }
}
void trans(int index){
    double result[4][4];
    double roty[4][4] = {
    {cos(beta[index]),0,sin(beta[index]),0},
    {0,1,0,0},
    {-sin(beta[index]),0,cos(beta[index]),0},
    {0,0,0,1}
    };
    multiply(roty, matrix, result);
    for(int i = 0; i < 4; i ++){
    for(int j = 0; j < 4; j ++){
        matrix[i][j] = result[i][j];
    }
    }
    double rotz[4][4] = {
    {cos(rot[index]),-sin(rot[index]),0,0},
    {sin(rot[index]),cos(rot[index]),0,0},
    {0,0,1,0},
    {0,0,0,1}
    };
    multiply(rotz, matrix, result);
    for(int i = 0; i < 4; i ++){
    for(int j = 0; j < 4; j ++){
        matrix[i][j] = result[i][j];
    }
    }
    double transz[4][4] = {
    {1,0,0,0},
    {0,1,0,0},
    {0,0,1,d[index]},
    {0,0,0,1}
    };
    multiply(transz, matrix, result);
    for(int i = 0; i < 4; i ++){
    for(int j = 0; j < 4; j ++){
        matrix[i][j] = result[i][j];
    }
    }
    double rotx[4][4] = {
    {1,0,0,0},
    {0,cos(alfa[index]),-sin(alfa[index]),0},
    {0,sin(alfa[index]),cos(alfa[index]),0},
    {0,0,0,1}
    };
    multiply(rotx, matrix, result);
    for(int i = 0; i < 4; i ++){
    for(int j = 0; j < 4; j ++){
        matrix[i][j] = result[i][j];
    }
    }
    double transx[4][4] = {
    {1,0,0,a[index]},
    {0,1,0,0},
    {0,0,1,0},
    {0,0,0,1}
    };
    multiply(transx, matrix, result);
    for(int i = 0; i < 4; i ++){
    for(int j = 0; j < 4; j ++){
        matrix[i][j] = result[i][j];
    }
    }
}
void calculate(){
    for(int i = 4; i > -1; i--){
    trans(i);
    }
}
int main() {
    //full_calculate();
    calculate();
    for(int i = 0; i < 4; i ++){
    for(int j = 0; j < 4; j ++){
        if(abs(matrix[i][j])<0.001){
        matrix[i][j] = 0;
        }
        cout << matrix[i][j] << "\t" << "\t";
    }
    cout<< "\n";
    }
    return 0;
}

This time, I change the rotation on x-axis to y-axis in joint 1 and joint 5

Although the results for 1,2,3,4,5 and M_PI/4,-M_PI/6,M_PI/6,M_PI/4,M_PI/2 is different from the integrated matrix, but I believe it is the previous result incorrect

To make sure this approach is correct, I continued to try some combinations

Rotation angle End coordinates Previous solution
0,0,0,0,0 0,0,276 276,0,0
0,0,0,M_PI/2,0 0,65,211 122,0,-155
M_PI/2,0,0,M_PI/2,0 -65,0,211 0,122,-155
M_PI/4,0,0,M_PI/2,0 -46,46,211 86,86,-155
0,0,M_PI/2,M_PI/2,0 0,90,65 -139,0,-155
0,0,-M_PI/2,M_PI/2,0    
     

Theoretically, these values are correct, we can examine it if we have the robot arm